Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Poly[bis $\left(\mu_{2}\right.$-2-aminopyrazine- $\left.\kappa^{2} N^{1}: N^{4}\right)$ (μ_{2}-nitrato- $\kappa^{2} O: O$)(nitrato- $\kappa^{2} O, O^{\prime}$)disilver(I)]: an achiral two-dimensional coordination polymer forming chiral crystals

Di Sun, ${ }^{\text {a }}$ Geng-Geng Luo, ${ }^{\text {a }}$ Na Zhang, ${ }^{\text {a }}$ Rong-Bin Huang ${ }^{\text {a }}$ and Lan-Sun Zheng ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005,
People's Republic of China
Correspondence e-mail: rbhuang@xmu.edu.cn

Received 4 October 2009
Accepted 31 October 2009
Online 21 November 2009
The solution reaction of AgNO_{3} and 2-aminopyrazine (apyz) in a $1: 1$ ratio gives rise to the title compound, $\left[\mathrm{Ag}_{2}\left(\mathrm{NO}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{2}\right]_{n}$, (I), which possesses a chiral crystal structure. In (I), both of the crystallographically independent Ag^{I} cations are coordinated in tetrahedral geometries by two N atoms from two apyz ligands and two O atoms from nitrate anions; however, the Ag^{I} centers show two different coordination environments in which one is coordinated by two O atoms from two different symmetry-related nitrate anions and the second is coordinated by two O atoms from a single nitrate anion. The crystal structure consists of one-dimensional Ag^{I} apyz chains, which are further extended by $\mu_{2}-\kappa^{2} O: O$ nitrate anions into a two-dimensional $(4,4)$ sheet. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}_{\text {apyz }}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect neighboring sheets to form a three-dimensional supramolecular framework.

Comment

Interest in crystal engineering and supramolecular chemistry is rapidly increasing because of the diverse and aesthetic structural topologies of the products of such studies and their potential use in optical, electrical, catalytic and gas storage applications and even in drug delivery (Blake, Brooks et al., 1999; Blake, Champness et al., 1999; Blake et al., 1997; Evans \& Lin, 2002; Kitagawa et al., 2004; Yaghi et al., 2003; Applegarth et al., 2005). In particular, there is considerable interest in chiral solid-state materials, owing to their potential applications in asymmetric catalysis and chiral separation (Kesanli \& Lin, 2003; Pidcock, 2005). Although these chiral materials can be synthesized from chiral organic spacers and metal ions (Dai et al., 2005; Wang et al., 2008; Zaworotko, 2001), compounds presenting chiral crystal structures self-assembled from the
Ag^{I} cation and achiral 2-aminopyrazine (apyz) ligand have not been documented yet. Recently, we have undertaken a series of investigations into the self-assembly of the Ag^{I} cation with different angular and linear bipodal N -donor ligands, such as aminopyrimidine and aminopyrazine (e.g. Luo, Huang, Chen et al., 2008; Luo, Huang, Zhang et al., 2008; Luo, Sun, Xu et al., 2009; Luo, Sun, Zhang, Huang \& Zheng, 2009; Luo, Sun, Zhang, Xu et al., 2009; Sun, Luo, Huang et al., 2009; Sun, Luo, Xu et al., 2009; Sun, Luo, Zhang et al., 2009), with the principal aim of obtaining supramolecular compounds or multifunctional coordination polymers. During an attempt to exploit the influence of anions on the Ag^{I}-apyz system, we surprisingly obtained the title achiral coordination polymer, (I), which stacks to give a chiral crystal structure.

(I)

The asymmetric unit of (I) contains two different Ag^{I} cations, two apyz ligands and two nitrate anions. The coordination geometry of the Ag^{I} cation is tetrahedral, and each Ag^{I} cation is coordinated by two N atoms from two different apyz ligands and two O atoms from nitrate anions (Fig. 1); however, the Ag^{I} centers show two different coordination environments in which Ag 1 is coordinated by two O atoms from two different symmetry-related nitrate anions and Ag 2 is coordinated by two O atoms from a single nitrate anion. The nitrate anions show two different coordination modes, namely $\mu_{2}-$ $\kappa^{2} O: O$ and $\kappa^{2} O, O^{\prime}$, which are found in many other silver(I) compounds (Cui \& He, 2003; Faure et al., 1985; Chen et al., 2004). The geometric parameters, especially the bond angles

Figure 1
The structure of (I), showing the atom-numbering scheme and the coordination environment around the Ag^{I} centers. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z+1$; (iii) $x+1, y, z-1$.]
around Ag 1 and Ag 2 , are obviously different. The bond angles around Ag 1 and Ag 2 open up from the ideal tetrahedral angle to $145.84(14)$ and $150.84(14)^{\circ}$, respectively, while the remaining angles around Ag 1 and Ag 2 are in the ranges $85.20(12)-125.32(12)$ and $49.89(9)-113.25(12)^{\circ}$, respectively. The $\mathrm{Ag}-\mathrm{N}$ and $\mathrm{Ag}-\mathrm{O}$ bond lengths (Table 1) are comparable to those in related compounds (Fan et al., 2007; Oxtoby et al., 2002; Turner et al., 2005; Massoud \& Langer, 2009; Massoud et al., 2009; Withersby et al., 1997; Zartilas et al., 2007). There are also weak Ag...C interactions with Ag...C distances in the range 3.314 (4)-3.322 (4) \AA, which fall in the secondary bonding range (the sum of the van der Waals radii of Ag and C is $3.42 \AA$; Mascal et al., 2000). Some polymeric silver(I) compounds of aromatic ligands have been reported to present similar Ag..C interactions, with Ag..C bond distances of ca 2.80-3.38 A (Blake et al., 2000; Khlobystov et al., 2001). Therefore, these interactions in (I) are very important, in the present case, for the packing of (I) in the solid state. Between neighboring chains, the shortest $\mathrm{Ag} \cdots \mathrm{Ag}$ separation is 3.6087 (6) \AA, which is longer than twice the van der Waals radius of Ag^{I} (1.72 \AA; Bondi, 1964), indicating no direct metal-metal interaction.

Figure 2
A ball-stick perspective view, along the b axis, of the two-dimensional sheet in (I). H atoms have been omitted for clarity.

Figure 3
A schematic view, along the b axis, of the (4,4)-net in (I).

Figure 4
A perspective view, along the a axis, of the three-dimensional supramolecular framework incorporating $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines).

The apyz ligand acts in a $\mu_{2}-N: N^{\prime}$-bidentate fashion to link Ag^{I} cations to form a one-dimensional chain along the c axis in which Ag 1 and Ag 2 alternate. The $\mu_{2}-\kappa^{2} O: O$-nitrate anions play an important role in constructing the two-dimensional undulating sheet (Fig. 2) in which $\mu_{2}-\kappa^{2} O: O$-nitrate anions bridge neighboring chains. Fig. 3 shows a schematic depiction of the sheet, which has a $(4,4)$ topology (Batten \& Robson, 1998), with Ag^{1} cations as the four-connected nodes and with meshes of dimensions $3.61 \times 7.13 \AA$. In addition, amino groups from apyz ligands act as hydrogen-bond donors with $\mathrm{N} \cdots \mathrm{O}$ distances in the range 2.912 (5) -3.099 (5) \AA (Table 2) to form intra-sheet $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Apyz-nitrate $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with $\mathrm{C} \cdots \mathrm{O}$ distances in the range 3.066 (5)-3.521 (5) \AA not only support the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds within the sheets but also link the sheets to form a three-dimensional network (Fig. 4).

Experimental

All reagents and solvents were used as obtained commercially without further purification. To an aqueous solution (14 ml) of $\mathrm{AgNO}_{3}(170 \mathrm{mg}, 1.0 \mathrm{mmol})$, aminopyrazine $(95 \mathrm{mg}, 1.0 \mathrm{mmol})$ in ethanol (12 ml) was added dropwise under continuous stirring. The resulting grey precipitate was filtered off, and the clear filtrate was left undisturbed for two weeks. Yellow block-shaped crystals suitable for X-ray measurements formed, were collected by filtration and dried in air; the yield was 62% with respect to the ligand. Analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Ag}_{2} \mathrm{~N}_{8} \mathrm{O}_{6}$: C 18.13, H1.90, N 21.14\%; found: C 18.18, H 1.81, N 21.21%. IR (KBr, cm^{-1}): $3332(s, b r), 3142(s, b r), 1643(v s), 1582$ (vs), 1530 (s), 1475 (sh), 1207 (m), 1038 (w), 1001 (m), 828 (m), 619 (w), 431 (w).

Crystal data

```
\(\left[\mathrm{Ag}_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)_{2}\right]\)
\(M_{r}=529.98\)
Monoclinic, \(P 2_{1}\)
\(a=3.6087\) (1) A
\(b=15.4328(5) \AA\)
\(c=12.7326\) (3) \(\AA\)
\(\beta=97.566(2)^{\circ}\)
```


Data collection

Oxford Diffraction Gemini S Ultra diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)
$T_{\text {min }}=0.629, T_{\text {max }}=0.727$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.050$
$S=0.99$
2573 reflections
217 parameters
1 restraint

3805 measured reflections 2573 independent reflections 2436 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

All H atoms were positioned geometrically and treated as riding $\left[\mathrm{C}-\mathrm{H}=0.95 \AA\right.$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$, with $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})\right]$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; structure solution: SHELXS97 (Sheldrick, 2008); structure refinement: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009).

This work was supported financially by the National Natural Science Foundation of China (grant No. 20721001) and the 973 Project (grant No. 2007CB815301) from MSTC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN3128). Services for accessing these data are described at the back of the journal.

References

Applegarth, L., Goeta, A. E. \& Steed, J. W. (2005). Chem. Commun. pp. 24052406.

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Blake, A. J., Baum, G., Champness, N. R., Chung, S. S. M., Cooke, P. A., Fenske, D., Khlobystov, A. N., Lemenovskii, D. A., Li, W. S. \& Schröder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4285-4291.

Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P., Li, W. S. \& Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103-2110.
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. \& Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.
Blake, A. J., Hill, S. J., Hubberstey, P. \& Li, W. S. (1997). J. Chem. Soc. Dalton Trans. pp. 913-914.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Brandenburg, K. (2008). DIAMOND. Version 3.1f. Crystal Impact GbR, Bonn, Germany.
Chen, Y.-B., Kang, Y., Qin, Y.-Y., Li, Z.-J., Cheng, J.-K., Hu, R.-F., Wen, Y.-H. \& Yao, Y.-G. (2004). Acta Cryst. C60, m168-m169.
Cui, Y. \& He, C. (2003). J. Am. Chem. Soc. 125, 16202-16203.
Dai, Y.-M., Ma, E., Tang, E., Zhang, J., Li, Z.-J., Huang, X.-D. \& Yao, Y.-G. (2005). Cryst. Growth Des. 5, 1313-1315.

Evans, O. R. \& Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
Fan, J., Wang, Y., Blake, A. J., Wilson, C., Davies, E. S., Khlobystov, A. N. \& Schröder, M. (2007). Angew. Chem. Int. Ed. 46, 8013-8016.
Faure, R., Loiseleur, H., Haufe, G. \& Trauer, H. (1985). Acta Cryst. C41, 1593-1595. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kesanli, B. \& Lin, W. (2003). Coord. Chem. Rev. 246, 305-326.
Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V. \& Schröder, M. (2001). Coord. Chem. Rev. 222, 155-192.
Kitagawa, S., Kitaura, R. \& Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.
Luo, G.-G., Huang, R.-B., Chen, J.-H., Lin, L.-R. \& Zheng, L.-S. (2008). Polyhedron, 27, 2791-2798.
Luo, G.-G., Huang, R.-B., Zhang, N., Lin, L.-R. \& Zheng, L.-S. (2008). Polyhedron, 27, 3231-3238.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ag} 1-\mathrm{N} 1$	$2.214(3)$	$\mathrm{Ag} 2-\mathrm{N} 2$	$2.224(3)$
$\mathrm{Ag} 1-\mathrm{N} 8$	$2.176(3)$	$\mathrm{Ag} 2-\mathrm{N} 6^{\mathrm{ii}}$	$2.234(3)$
$\mathrm{Ag} 1-\mathrm{O} 4$	$2.463(3)$	$\mathrm{Ag} 2-\mathrm{O} 1$	$2.555(3)$
$\mathrm{Ag} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.577(3)$	$\mathrm{Ag} 2-\mathrm{O} 2$	$2.581(3)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 8$	$145.84(14)$	$\mathrm{N} 2-\mathrm{Ag} 2-\mathrm{O} 2$	$117.70(12)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 4$	$85.20(12)$	$\mathrm{N} 6^{\mathrm{ii}}-\mathrm{Ag} 2-\mathrm{O} 1$	$113.25(12)$
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 4^{\mathrm{i}}$	$95.44(11)$	$\mathrm{N} 6^{\mathrm{ii}}-\mathrm{Ag} 2-\mathrm{O} 2$	$90.22(12)$
$\mathrm{N} 8-\mathrm{Ag} 1-\mathrm{O} 4$	$125.32(12)$	$\mathrm{O} 1-\mathrm{Ag} 2-\mathrm{O} 2$	$49.89(9)$
$\mathrm{N} 8-\mathrm{Ag} 1-\mathrm{O} 4^{\mathrm{i}}$	$98.35(12)$	$\mathrm{O} 4-\mathrm{Ag} 1-\mathrm{O} 4^{\mathrm{i}}$	$91.43(12)$
$\mathrm{N} 2-\mathrm{Ag} 2-\mathrm{N} 6^{\mathrm{ii}}$	$150.84(14)$	$\mathrm{N} 5-\mathrm{O} 4-\mathrm{Ag} 1^{\mathrm{iii}}$	$128.4(2)$
$\mathrm{N} 2-\mathrm{Ag} 2-\mathrm{O} 1$	$92.56(12)$	$\mathrm{C} 7-\mathrm{N} 6-\mathrm{Ag} 2^{\mathrm{iv}}$	$120.4(3)$

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z+1$; (iii) $x-1, y, z$; (iv) $x+1, y, z-1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N7-H7B \cdots O5	0.88	2.08	2.912 (5)	157
N3-H3B $\cdots \mathrm{O}^{\text {i }}$	0.88	2.17	2.998 (5)	156
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{O}^{2}$	0.88	2.23	3.099 (5)	172
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{C} \cdots \mathrm{O} 1^{\text {vi }}$	0.88	2.19	3.031 (5)	161
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 5^{\text {vii }}$	0.95	2.49	3.211 (5)	133
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6^{\text {vii }}$	0.95	2.57	3.521 (6)	175
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\text {viii }}$	0.95	2.44	3.108 (6)	127
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\text {vii }}$	0.95	2.55	3.299 (6)	136
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 3^{\text {ix }}$	0.95	2.34	3.066 (5)	133
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {iv }}$	0.95	2.56	3.266 (5)	131
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\text {x }}$	0.95	2.31	3.109 (5)	142

Symmetry codes: (i) $x+1, y, z$; (iv) $x+1, y, z-1$; (v) $-x+1, y-\frac{1}{2},-z+2$; (vi) $-x, y-\frac{1}{2},-z+1$; (vii) $-x, y+\frac{1}{2},-z+1$; (viii) $-x+1, y+\frac{1}{2},-z+1$; (ix) $-x, y-\frac{1}{2}$, $-z+2 ;(\mathrm{x})-x+1, y-\frac{1}{2},-z+1$.

Luo, G.-G., Sun, D., Xu, Q.-J., Lin, L.-R., Huang, R.-B. \& Zheng, L.-S. (2009). Inorg. Chem. Commun. 12, 436-439.
Luo, G.-G., Sun, D., Zhang, N., Huang, R.-B. \& Zheng, L.-S. (2009). J. Mol. Struct. doi:10.1016/j.molstruc.2009.09.004.
Luo, G.-G., Sun, D., Zhang, N., Xu, Q.-J., Lin, L.-R., Huang, R.-B. \& Zheng, L.-S. (2009). Inorg. Chem. Commun. doi:10.1016/j.inoche.2009.10.004.

Mascal, M., Kerdelhue, J. L., Blake, A. J., Cooke, P. A., Mortimer, R. J. \& Teat, S. J. (2000). Eur. J. Inorg. Chem. pp. 485-490.

Massoud, A. A., Hefnawy, A., Langer, V., Khatab, M. A., Öhrstrom, L. \& AbuYoussef, M. A. M. (2009). Polyhedron, 28, 2794-2802.
Massoud, A. A. \& Langer, V. (2009). Acta Cryst. C65, m198-m200.
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.24. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Oxtoby, N. S., Blake, A. J., Champness, N. R. \& Wilson, C. (2002). Proc. Natl Acad. Sci. USA, 99, 4905-4910.
Pidcock, E. (2005). Chem. Commun. pp. 3457-3459.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, D., Luo, G.-G., Huang, R.-B., Zhang, N. \& Zheng, L.-S. (2009). Acta Cryst. C65, m305-m307.
Sun, D., Luo, G.-G., Xu, Q.-J., Zhang, N., Jin, Y.-C., Zhao, H.-X., Lin, L.-R., Huang, R.-B. \& Zheng, L.-S. (2009). Inorg. Chem. Commun. 12, 782-784.
Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. \& Zheng, L.-S. (2009). Polyhedron, 28, 2983-2988.

Turner, D. R., Smith, B., Spence, E. C., Goeta, A. E., Evans, I. R., Tocher, D. A., Howard, J. A. K. \& Steed, J. W. (2005). New J. Chem. 29, 90-98.
Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. \& Xu, J.-W. (2008). Cryst. Growth Des. 8, 1932-1939.
Westrip, S. (2009). publCIF. In preparation.
Withersby, M. A., Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S. \& Schröder, M. (1997). Angew. Chem. Int. Ed. 36, 2327-2329.
Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

Zartilas, S., Kourkoumelis, N., Hadjikakou, S. K., Hadjiliadis, N., Zachariadis, P., Kubicki, M., Denisov, A. Y. \& Butler, I. (2007). Eur. J. Inorg. Chem. pp. 1219-1224.
Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.

